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SUMI'ARY

This report summarizes the hover performance studies for the
Advanced Tandem Helicopters ranging in gross weight from Medium
Lift Helicopters (MLH) of 50,000 pounds gross weight to Very
High Lift Helicopters (VHLH) at 200,000 pounds, and describes
the full flight envelope simulator math model for piloted sim-
ulation of these configurations. The programming and the model
validation approaches are also discussed.

Four crane-type tandem rotor helicopters with the gross weight
capability of 50,000 pounds, 80,000 pounds, 120,000 pounds,

and 200,000 pounds are defined in terms of rotor and fuselage
parameters and the resulting dynamic characteristics. An auto-
matic Precision Hover System (PHS) is synthesized and the hover
hold system performance established analytically including
aircraft position errors and pilot station acceleration envir-
onment as a function of low speed turbulence. In addition,
pilot modeling techniques are utilized to analytically estimate
the piloted performance and rating for various attitude and
linear velocity control response modes without the aid of
automatic hold functions. These estimated performance and
rating levels are compared with similar data obtained from a
piloted simulator evaluation on the Northrop Corporation (LAS/
WAVS) Large Amplitude Simulator/Wide Angle Visual System. The
comparison is conducted for the 50,000 pounds gross weight to
establish the degree of validity associated with the pre-
selected analytical approaches.

The analytical results indicate that the tandem configurations
(up to 200,000 pounds) can hold position with essentially the
same accuracy regardless of the specific gross weight. This
property is the result of the overwhelming dominance of the
automatic control over the inherent aircraft characteristics,
as well as of the basic dynamic similarity of all gross weight
configurations.

Analysis of the hover hold capability in turbulence reveals
that the piloted performance is mainly a function of specific
control augmentation modes (command systems or control types),
and is only weakly dependent on actual gross weight configura-
tion. This is another indication of the dominance of the
automatic pilot assist modes over the inherent dynamic response
characteristics of helicopters in hover. In general, a good,
precise, hover hold capability is obtainable with horizontal
velocity command system involving very little attitude re-
sponse,

The simulator evaluation of the 50,000-pound configuration

confirms, in general, the basic analytical results relating to
the piloted and the automatic system performance. In case of
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piloted performance, the analysis predicts well the best ob-
tainable hover hold capability for all command systems, but
the average actual performance on simulator agrees exactly
with the analytical predictions only for linear velocity type
command systems. The difficulty in predicting piloted per-
formance with marginal command systems (e.g.,attitude or ac-
celeration types) stems from the uncertainty in assessing the
pilot apprehension level resulting from display limitations,
damping level preferences, and indirect visual and/or physical
cues (e.g.,attitude changes during position control; rapid
position display motion because of small scale, etc).

The general results of this research effort provide a vali-
dated basis for further analysis and piloted simulation of
VHLH configurations regarding their performance capabilities,
handling qualities criteria and automatic system requirements
in hover and forward flight. The package containing MLH and
VHLH configuration data provides the aircraft data for analyt-
ical studies. This data package, combined with the validated
simulator model at the Northrop Corporation, Aircraft Division,
LAS/WAVS facility, is suitable for further piloted simulator
evaluation of hover and forward flight helicopter performance
with and without externally slung loads. Finally, the analyt-
ical approach used here and validated against the piloted
simulator results enables the designer to optimize his low
speed control concepts inexpensively with a significant con-
fidence 1level.
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FOREWORD

This report constitutes the work of the Boeing Vertol Company
in performance of U.S. Army Air Mobility Research and Develop-
ment Laboratory Contract DAAJ02-72-C-0095 (DA Task 1F162204-
AA4401). The work was performed from June 1972 through August
1973 with Mr. James M. Davis as the Prcgram Manager, and
Messrs. R.T. Lytwyn and F. White as the principal investiga-
tors. The Army technical representative was Mr. Robert P.
Smith of Eustis Directorate, USAAMRDL, Fort Eustis, Virginia.

The ground-based simulator evaluation work was performed at
the Northrop Corporation, Aircraft Division Aerosciences
Laboratory in Hawthorne, California. The simulator mechani-
zation was accomplished under the guidance of John B. Sinacori.
Mr. A. Murakoshi was the principal application engineer, with
Messrs. William Ross and Raymond Silvestri assisting him
throughout the program.

Mr. A.P. Santa-Maria from the Boeing Vertol Experimental
Flight Operations was the simulator test pilot on this pro-
gram, and Mr. E. Low from the Aerodynamics Technology Staff
performed the configuration definition work.
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INTRODUCTION

BACKGROUND

Potential applications for large helicopters with external
load capability include the stacking of containers on trucks
or ships, bridge placement, and modular housing construction.
A high degree of precision is required from the helicopter if
these types of operations are to be performed in a timely and
safe manner.

The ability of a helicopter to hover accurately with respect
to a fixed reference point depends on the inertial and aero-
dynamic characteristics of the aircraft, the design of the
automatic flight c¢ntrol system, and the response of the rotor
and flight control:system. At present, no experience with
large helicopters [(80,000 pounds and larger gross weights)
exists which would indicate their potential capabilities or
limitations during precise hover hold missions. As the size
of the helicopter is increased, larger rotors are required
which must operate at lower rpm. This leads to lower, rotor-
induced frequencies, which might conceivably alter the basic
responses normally experienced with existing medium-gross-
weight aircraft. Pure extrapolation to a larger size contains
a sufficient number of unknown factors affecting the flying
qualities to warrant a closer analytical and simulator evalua-
tion of the performance of such aircraft during precise hover
hold missions. The questions of aircraft size effect on the
pilot's ability to perform these missions must be addressed

in analyses and simulations. The control system pilot-assist
requirements, as well as the automatic hover hold functions,
must be synthesized and evaluated.

The sensitivity of these helicopters to turbulence levels must
also be established if an all-weather operational capability
is to be ensured. The acceleration environment at the crew
station should be investigated since the cockpit position with
respect to aircraft center of gravity will increase with the
helicopter size, and too large acceleration levels will inter-
fere with the precise piloting task.

OBJECTIVES AND SCOPE

The main objective of the analytical portion of this investi-
gation is the evaluation of helicopter size effects on its
capability to perform precise hover position hold missions.
For this purpose, the study defines parametrically four
tandem-rotor helicopter configurations with the gross weight
capability of 50,000, 80,000, 120,000, and 200,000 pounds,
and synthesizes the automatic control system functions for
precise hover capability and pilot control augmentation (as-
sist functions). A single precision hover system (PHS) and
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stability augmentation system (SAS) is used for all gross
weight configurations. Several pilot-assist functions are
designed using different combinations of longitudinal cyclic
pitch (DCP), with conventional lateral cyclic control. Auto-
matic feedback functions are also included to provide the
pilot with direct acceleration, velocity, or altitude control
on the stick. A full-flight envelope mathematical model is
utilized to perform piloted evaluation and to compare the
results with analytical predictions. The hover position hold
capabilities and pilot station accelerations are defined as a

function of turbulence level, pilot control augmentation modes,

and gross weight configurations. The unpiloted aircraft posi-
tion hold capabilities with PHS augmentation are compared
with the piloted performance without ground position and ve-
locity hold. Several test points are compared directly with
the piloted simulator results in terms of turbulence effects,
control assist functions, and pilot station acceleration
levels.



DEVELOPMENT OF PARAMETRIC CHARACTERISTICS FOR
ADVANCED TANDEM-ROTOR HEAVY LIFT
HELICOPTER CONFIGURATIONS

The four tandem-rotor helicopters defined in this section are
based on scaling the existing HLH designs up into the VHLH
gross weight region. The ground rules for scaling of the
aerodynamic performance and fuselage aerodynamic forces and
moments are discussed below, and the dynamic characteristics
of the basic aircraft are presented on page 13.

ADVANCED TANDEM-ROTOR HEAVY LIFT HELICOPTER (HLH)
CONFIGURATIONS

Sizing Ground Rules and Aircraft Parameters

The four HLH configurations shown in Figure 1 are based on the
scaling of the Boeing-Vertol Model 301 Heavy Lift Helicopter,
with a design gross weight of from 120,000 pounds to the
equivalent of tandem-rotor helicopters at higher and lower
gross weights. As such, they are based on the following scal-
ing ground rules:

1. Disc loading = 8.9 1lb/ft?

2. Rotor overlap = 23.8% of rotor diameter

3. Rotor solidity = 0.0923

4. Tip speed = 750 fps

5. All reference lengths, except the main landing gear,
are proportional to design gross weight. The main
landing gear is assumed to be constant in order to
accommodate an 8-by-8-by 20-ft cargo container.

6. All reference areas, except the equivalent flat plate
area (fg), are proportional to design gross weight.
The flat plate area, (fg),is based on the following:

® Main landing gear flat plate area varies as the
square root of gross weight.

® All other items vary linearly with gross weight.

7. Engine and transmission ratings are proportional to
design gross weight.

8. Moments of inertia are scaled from the Model 301 Heavy
Lift Helicopter data, using the length and area pro-
portionality described ahove,



NORMAL GROSS WT:

50,000 LB

R = 29.90 FT
DR = 45.57 FT
h = 6.0 FT
hH = 6.83 FT

80,000 LB

R = 37.82 FT
DR = 57.64 FT
h =7.6 FT
hH = 8.63 FT

/ 120,000 LB
R = 46.32 FT
DR = 70.59 FT
h = 9.35 FT

hyg = 10.57 FT

200,000 LB

R = 59.80 FT
DR = 91.14 FT
h = 12.1 FT
hy = 13.65 FT

Figure 1. Advanced Tandem-Rotor
HLH Configuration Data.
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The aircraft parameters defining each design gross weight
configuration are summarized in Table I.

The disc loading of 8.9 pounds per square foot represents more
realistically the current tandem-rotor helicopter designs,
while attempting to keep the downwash velocity sufficiently
small at reasonable power level requirements.

Fuselage Aerodynamics and Scaling Factors

Tables II through VII summarize the fuselage aerodynamic
forces and moments for the baseline HLH configuration at
120,000 pounds gross weight. The tables are based on wind
tunnel test results for a solid model of a tandem-rotor heavy
lift helicopter. Data presented in the tables are functions
of fuselage angle of attack, o, and fuselage sideslip angle,
B. Tabular force and moment information is expressed in the
body axis in the form: drag (D/qd), sideforce (Y¥/qd), lift
(L/qd), pitching moment (M/qd), rolling moment (X/gd), and yawing
moment (N/qd), with o from -90° to +90°, and 8 from -90° to
+90°, From 90° to 180°, the curves are assumed to be mirror
image values of 0° to 90°,

Moment data is expressed about a center-of-gravity location at
which the wind tunnel model was tested. Moment corrections
proportional to the distance to the c.g. location being flown
with the full force simulation model are applied to the stored
data.

Tabular fuselage data usually does not account for rotor hub
drag, momentum drag, and leakage drag and therefore must be
adjusted to the correct level before being used. A Af, cor-
rection is applied to the tabulated 1lift, drag, and sige force
data to account for these items.

The fuselage aerodynamic data shown in Tables II through VII
are already corrected for the rotor hub drag, and are based
on the total equivalent flat plate area of 138.0 sq ft. This
represents very closely the 120,000-pound configuration, and
the tables can be used directly for that configuration gross
weight. For configurations other than the 120,000 pounds, the
following scale factors should be applied to arrive at the
corresponding fuselage aerodynamic tables:

= ) (o/ga)
D/ = D/
qd eREF 9d/papLE 11

R 2 Y/, d)
Regr TABLE IV
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REF
3
R M/
CREI
ad RepF TABLE V
3(z
SRCOI
qd RpEF TABLE VI
3
R N/
Nqa = (R F) ( qd) TABLE VII
where
_ 2
ferer 138.0 ft
fe = tabulated in TABLE I
Rppr = 45.0 ft
R = tabulated in TABLE I

These scaling formulas are based on the assumptions that all
non-dimensional aerodynamic force and moment coefficients are
constant for each gross weight configuration. Only the scal-
ings of reference lengths and areas are required, aBd these
are proportional to rotor radius and (rotor radius)“ respec-
tively.

DYNAMIC CHARACTERISTICS

The stability derivations presented in this section are based
on the standard Boeing-Vertol trim and stability digital pro-
gram A-97. The program computes the helicopter trim by

means of an iterative solution to the six steady-state equa-
tions, summing all forces and moments about the fixed body
axis. A numerical approach to the solution of the rotor flap-
ping and force equations is used, allowing for the automatic
accounting of blade stall, reverse flow, and compressibility
effects. The simplifications or assumptions contained in the
rotor analysis include the following:

® Induced velocity distribution is assumed to be uniform.
® Blade lag and all elastic degrees of freedom are

neglected.
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e Nonsteady aerodynamic and spanwise flow effects are
neglected.

The stability derivatives and control powers are then obtained
numerically by evaluating the changes in the helicopter forces
and moments from their trim value caused by a small perturba-
tion in an independent parameter. These derivatives are
quasi-static; i.e., the rotor is assumed to reach its new
steady-state condition instantaneously as the perturbation is

applied.

The stability derivatives data are presented for sea-level
standard conditions (midpoint c.g. position) in hover at all
design gross weights and all estimated empty gross weights.

An analysis is then made of the effects of scaling on impor-
tant hover derivatives and the associated dynamic properties.
All control sensitivity data are based on constant cockpit
control-to-blade pitch angle mechanical ratios consistent with
the typical tandem-rotor HLH configuration.

Stability Derivatives

A summary of stability derivatives for all design gross weight
configurations in hover is shown in Table VIII. The most im-
portant derivatives, which define the helicopter dynamics in
hover, are plotted in Figures 2 and 3. The following discus-
sion elucidates the scaling properties of the major derivatives
plotted in these figures.

Longitudinal Axis

The most important derivatives in hover are represented by the
vertical damping, 2, the pitch damping, Mg, and the pitch
acceleration due to longitudinal velocity, M,;. These deriva-
tives, together with the control sensitivities Zgc and Mgp,
determine the aircraft response to pilot input in hover.

The vertical damping, 2 is determined by the sensitivity of
rotor thrust to vertica veloc1ty. According to Reference 1,
this derivative in hover can be approximated by the formula

14



TABLE VIII. ADVANCED TANDEM-ROTOR HLH
STABILITY DERIVATIVES
Hover, midpoint C.G., sea level, standard day
750 ft/sec tip speed
Configuration
50,000 Lb 80,000 Lb 120,000 Lb 200,000 Lb
L Design | Empty Design Empty Design | Empty Design Empty
aram. Param. Gross Gross Gross Gross Gross Gross Gross Gross
No. Symbol| Units Weight | Weight |Weight |Weight | Weight | Weight | Weight Weight
1 o, deg 2.842| 2.804| 2.805| 2.769] 2.779| 2.743] 2.757| 2.719
2 Brer  |deg -.40 -.40 -.40 -.40 -.40 -.40 -.40| -0.40
3 Bior  |deg -2.80| -2.80| -2.80| -2.80| -2.80| -2.80| -2.80| -2.80
‘4 Xu 1/ sec -.01802 | -.01260 |-.01756 |-.01180 | -.01718 [ -.01127 | -.01682 | -.01088
5 e, 1/ sec .00791 | .01389 | .00794 | .o1476 | .00806 | .01537 | .cos1s | .01577
< xq £t/ pec 6444 | -.06072 | .7521 | -.2741 ]| .8774| -.4927| 1.0B30 ! - 798
7 Xsp  |£t/gec?
Tn. .1389 | .2303 | .1-91 | .2448| .1412| .2564| .1440| 2655
8 Xso  |Et/gor2
T .2926 | .4631 ] .2925 | .4950| .2065| .s172] .3015| .s341
9 L Vgec .01010 | .01762 | .o1023 | .o01876 | .o0998 | .01886 | .00995 | .o01815
«
ORI e Vgee -.2230 | ~.3556 | -.2229 | -.3771| -.2246 | -.3900 | -.2263 | -.3975
S ft/sec | -1.0901 | -1.5102 |-1.2620 |-2.0971 | -1.5525 | -2.6327 | -1.9504 | -3.295
12 Zop  |£t/gec?
Th. 1270 | L1418 | .1196 | .1394| L0991 | .1171| .o786 | .o0s83
13 'ZG ft/sec2
Tn. -7.306 | -11.478 | -7.308 [-12.151 | -7.346 | -12.585 | -7.397 | -12.881
[ ]
L3 Mu V¢r-sec| .0048s | .00457 | .r0396 | .00361| .00332| .00304| .00266 | .00243
15 2 1/¢e-sec | -.00406 | -.00401 | -.c0335 | -.00314 | -.00278 | -.00254 | -.00217 | -.00196
»
16 Bq 1 gec -.7648 | -.8166 | -.8053 | -.8400 | -.8468| -.8804 | -.8900 | -.9209
17 Mgy 1/, 02,
In, .2667| .2946 | .2241 | .2401( .1920| .2040| .1561| .1642
18 M. [1/gen2
Tn. -.1261 | -.1213| -.1031 | -.0949 | -.0840| -.0757 | -.0646 | -.0572
2 L7 Y sec -.01939 | -.01472 [ -.01892 | -.01395 | -.01860 | -.01360 { -.01827 | -.01335
20 e £t/ gec -.9316 | -.4400 |-1.1161 | -.4147 | -1.3287 | -.3088 | -1.6800 | -.3962
25 s ft/5ec | -.03489 | -.01400 | -.03077 |-.0ns41 | -.0401 | -.0057| -.0380 | .0238
22 Yoo |ft/,..1
Tn. 1.3351 | 1.3372 | 1.3143 | 1.3164 | 1.3038 ) 1.3050 | 1.2964 | 1.2042
23 Yop £t/
In. -.06059 | -.08461 | -.05521 |-.07885 | ~.05509 | -.08080 | -.05830 | -.08427
L]
24 b7 1/¢t-sec | -.00761 | -.00618 | -.00672 | -.00526 | -.00608 | -.00456 | -.00535 | -.00400
*
e Lp Y sec -.5681 | -.6473  -.6508 | -.7676 | ~.7564 | -.9035 | -.9137 |-1.1346
26 Lo Y gec .02801 | .02171 | .03631 | .o1354 | .04388| .o1156 | .0s379 | .o01423
&Y "Lgg 1 gec?-
In. .5376 | .6412 | .4813 | .ss3s| .4406 | .s200 .3931| .4788
28 Leg  |1/gec2
In. -.1949 | -.2091 | -.1852 | -.1891 | -.1751 | -.1704 | -.1608 | -.1531
29 by 1/ ¢t-sec |.0000528 |.0000271 | 000osse }0000115 [ 0000293 | 0000193 } 0000272 [ 0000154
L Ng YVeec  |-.000647 F.001963 F.000444 |-.00371 0. | -.00451 | .000309 | -.00397
[ ]
L s Y sec -.08745 | -.04756 | -.08608 [-.04190 | .08512 |-.03903 | -.08443 |-.03858
32 Neg  |1/g0e2.
In. .000628 | 000905 | .000785 |.000966 | .0n0k48 | .000829 | .000435 | .000719
L]
3 Nep 1 gec2-
Tn, 2305 L1541 | .1796 | .1116 | .1454¢| .0867| .1119 .0657
*Denotes the most important stability derivatives
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Since the tip speed, Vp, the disc loading, and the blade-chord-
to-rotor radius ratio are constant with the configuration

gross weight, the vertical damping remains nearly constant

with gross weight (see Figure 2). The factor

(EETB) « Disc Loading

C 2
R Npa VT

so at lower disc loading, the vertical damping will increase
for a given configuration. This is really the reflection of
decreasing helicopter mass as the gross weight of a given
configuration is reduced. The slight increase in 2y for the
empty weight configuration with higher design gross weights
represents the smaller ratio of empty-to-design gross weight
factor for heavier helicopters.

The pitch damping, M,, in hover is proportional to the verti-

cal damping, SO
2
- 2°m
Mq”w(T)
Yy

Again, since 2Z,; is constant with configuration design gross
weight, Mg should scale as the factor in brackets. For the
particular inertia and aircraft dimension scaling noted in
Table I, the scaling factor increases by about 15% from the
50,000-pound to the 200,000-pound configuration. This scaling
property is reflected in the increased My with configuration
design gross weight. At the empty gross weight (low disc
loading), the increased My is due to lower pitch inertia.

The pitch acceleration due to forward speed, My, can be ap-
proximated in hover (Reference 1) by the formula

e ()

U vy |\ ac P

so My will scale according to the factor (hgym/Iyy). The air-
craft dimensional and inertia scaling shown in Table I results
in a decreasing My with the configuration gross weight. The
slight decrease in M, at empty gross weight is due to lower
disc loading and lower pitch inertia.
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The vertical control sensitivity, 2o, is proportional to the
rotor thrust derivative with respect to the blade pitcl set-
ting. In hover (Reference 1),

-9 1
He T He T T B (- E L)

so the vertical control sensitivity, 2g§c, remains nearly con-
stant for all design gross weight configurations (Figure 2)

and increases with the lower disc loading (empty gross weight).
The increased Z5c at low gross weight is again the direct re-
sult of lower mass at constant thrust derivative with respect
to collective pitch.

The longitudinal stick sensitivity, Mszp, is directly propor-
tional to Z§. in tandem-rotor helicopters, because the pitch
control in tandem-rotor helicopters is derived mainly from
differential change in blade collective pitch angle on the
forward and rear rotors. The variation of M§p with aircraft
size can then be expressed in the proportional form

Am
Msg = Zg¢ (—Tyy)

and Mgp will scale as the factor (m/I y). For the particular
parameters shown in Table I, Mgp will gecrease by more than
40% as the aircraft configuration gross weight is increased
from 50,000 pounds to 200,000 pounds.

Lateral-Directional Axis

The most important lateral-directional derivatives in hover
are represented by the roll damping, Lp, the yaw damping, Lr,
and the roll acceleration due to side velocity, Ly. These
derivatives, together with the control sensitivities, Lgg and
NsRr, define the basic aircraft response to the pilot input in
hover.

The roll damping, Lp, is a function of rolling moment due to

rotor disc lateral tilting brought about by aircraft roll rate.
An approximate expression, valid in hover, is given by

SN ER [herWG + g (%) v
P YVT Ixx RIxx = T

As shown in Table I, Vg is constant and Y is nearly constant
for all gross weight configurations. Lp will then scale as
the rotor radius multiplied by the expression in brackets.
The expression in brackets is plotted in Figure 4 in terms of
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Figure 4. Average Roll Acceleration Sensitivities
to Rotor Disc Tilt in Hover.
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the rotor thrust tilt contribution, LAlCr and the centrifugal
moment part, LAlC: and as the sum (Lajc + LAlc), the total
roll acceleration sensitivity. As shown in the figure, the
total sensitivity decreases with the configuration gross
weight, but the decrease is much less than the inverse ratio
of rotor radii. Lp will then increase with configuration
gross weight as shown in Figure 3. At empty gross weights,
the higher Lp is a reflection of the dominant contribution of
the centrifugal forces to the rolling moment, which scales as
the inverse ratio of roll inertia.

The yaw damping, Ny, is related to the rotor disc tilt brought
about by lateral translational velocities at forward and aft
rotors. As such, it is a direct function of Yy of each rotor,
which can be approximated in hover by the formula

2Cr
y =- 8 (__Ji)
v VT ao

Nr ® Yv I

K

then

At constant disc loading and constant (C/R), Y, will remain
constant for all gross weight configurations. At lower disc
loading (e.g., weight empty), Yy, will decrease proportionately
to the disc loading. The yaw damping will_then scale with
configuration gross weight as the ratio (2°m/I,,), which, for
the parametric aircraft definition given in Table I, is equal
to unity at the design gross weight, and somewhat less than
unity at the empty gross weights. Consequently, the yaw damp-
ing, Ny, remains nearly constant with the design gross weight
and is decreased uniformly at lower disc loading.

The roll acceleration due to sideward velocity, Ly, is also
directly related to the rotor disc tilt brought about by the
side velocity. As such, its dependence on design gross weight
configurations can be related to Yy in the proportional form

h _m
er

Ly = YV(I )
XX

The scaling factor (hgrm/Ixx) decreases with the design gross
weight, while Yy remains constant. The derivative Ly will
then decrease at higher design gross weights. It will also
decrease proportionately with the disc loading.
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The lateral cyclic control sensitivity, Ls is a direct func-
tion of the lateral rotor disc tilt per unit of cyclic pitch
angle. 1In general, the rolling moment per unit cyclic pitch
comprises two most powerful contributions: the lateral com-
ponent of the thrust, and the hub moment due to the offset
flapping hinges. At hover, L§g can be approximately defined
in terms of roll moment per unit lateral cyclic in the form

-~ 1 Nag (eg 2
Lés “Lazc = 1 [her "t R (R )V'r

XX

The first term in the brackets represents the contribution of
the thrust tilt, while the second is the centrifugal force
moment. The first factor will scale with the design gross
weight as (herWG/Ixx)r and will therefore decrease with in-
creasing design gross weight, diminishing slightly at empty
gross weights (see Figure 4). The second factor remains con-

stant at all configuration gross weights, but scales as (%——)
XX

from normal! gross weight to weight empty. This centrifugal
force contribution will remain essentially constant with disc
loading.

The yaw control sensitivity, N§gr, for a tandem-rotor helicopter
1s generated by the lateral cyclic pitch applied differentially
on forward and aft rotors. As such, it can be expressed by

the following approximate formula, based on thrust tilt, above:

Nsr = NAIC = AWG/Iz,

Ngy will then scale as the factor (!Wg/I,;), and will there-
fore decrease with the increased configuration gross weight.
The diminishing property of N§y at empty gross weight (see
Figure 3) is attributable to the particular geometric and
inertial scaling properties of the configurations, rather than
to disc loading effects.

Dynamic Properties of Basic Aircraft Configurations

The dynamic characteristics discussed in this section are
based on aircraft rigid-body behavior as defined by the un-
coupled longitudinal and lateral-directional stability de-
rivatives listed in Table VIII. An approximation of the
characteristic roots in hover, based on Reference 1, is used
to elucidate the variations in these roots with configuration
gross weight and disc loading. The complete dynamic charac-
teristics, without simplifications, are tabulated in Table IX.
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Longitudinal Dynamics

The longitudinal dynamics in hover can be approximated by the
following expressions for the corresponding characteristic
roots:

Vertical Mode: r, = 2y
Pitch Subsidence Mode: rq = Mg

Pitch - Longitudinal Oscillations (Mg < 0):
au M V u
q | Q'

Vertical Mode: This mode determines the aircraft vertical
velocity response to collective stick, with the time constant

equal to
T =)
w lzw|

Figure 2 shows that the vertical response at normal gross
weight remains constant for all configurations with a time
constant of 4.5 seconds. At weight empty, the vertical time
constant will shorten to less than 3.0 seconds. Such time con-
stants are too long for precise vertical control, and collec-
tive control augmentation will be required for precise hover
tasks.

Pitch Subsidence Mode: As shown in Table IX, the pitch subsi-
dence mode remains nearly constant for all gross weight con-
figurations with a time constant of 1 second. Pitch damping
augmentation will be required in order to improve pure pitch
control and reduce the pitch time constant to a reasonable
magnitude.

Longitudinal Oscillatory Mode: This mode does not determine
the actual aircraft response to pilot inputs, but its unstable
character is generally detrimental to control in any turbu-
lence level. The frequency and the damping ratio of this

mode are functions of the ratio of M, to alone, so the mode
changes very little with gross weight configuration and disc
loading. The unstable feature of this mode in all hovering
helicopters is easily suppressed by pitch damping augmentation
through the differential collactive pitch feedback.

24



Lateral-Directional Dynamics

The lateral-directional dynamics in hover can be described by
the following approximate expressions for the characteristic
roots (poles):

Roll Subsidence Mode: r = L

rs p
Spiral (Yaw) Mode: rSp = Nr
L g L g
Dutch Roll Mode: r = i [ 2L + L )i
dr 2 L2 - L
P ||

The roll subsidence mode is the primary response mode around
which the pilot controls the helicopter in roll and sideward
motion. As shown in Table IX, the time constant of this mode,
equal to |1/ryg|, remains between 1.1 and 0.9 second for all
gross weight configurations. As such, it is generally too
long for precise control, so roll rate feedback is gernerally
required to improve the roll control on tandem, fully articu-
lated rotors.

The spiral or yaw mode in hover determines the aircraft re-
sponse to pedals. In tandem-rotor helicopters this mode is
nearly neutrally stable (see Table IX) because of insignificant
directional stability in hover. For precise control, all gross
weight configurations will require stability augmentation in
the yaw axis.

The Dutch roll mode is an unstable oscillatory mode dominated
by roll and sideward motion with some yaw. The unstable char-
acter of this motion is generally detrimental to aircraft con-
trol in any turbulence in hover. 1In hover the mode can be
stabilized usually by a tight roll feedback loop (rate and
attitude).
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FULL-FLIGHT ENVELOPE MATHEMATICAL MODEL

The airframe and the control system analytical models outlined
in this section are the same as the standard Boeing-Vertol
model utilized for the piloted simulation of the Model 347
helicopter and for Heavy Lift Helicopters. As such, the model
contains all the basic features of tandem-rotor helicopters,
including a simplified external load suspension system utiliz-
ing two longitudinally disposed cables. Only the basic fea-
tures of the model are described in this report. A detailed
description of the model is contained in Reference 5.

AIRFRAME DYNAMIC MODEL

The airframe and rotor dynamic model used for the full-flight
envelope tandem helicopter simulation is cdescribed in this
section. To illustrate how this model works, brief descrip-~
tions of each major calculation have been prepared and are
presented below in the general order in which they are per-
formed, starting with equations of motion and working back
around to the forces and moments which drive these motion
equations.

Figure 5 illustrates, in block diagram format, how the various
calculations in the model are related. Shown at the far
right-hand side of the chart are the equations of motion being
fed by the summed forces and moments. Other portions of the
diagram are associated with the computational steps described
below.

Airframe Calculation Summary

l. Basic equations of motion are solved, providing linear
and angular accelerations about all three axes. Euler
angle rotations are performed to orient the airframe
in inertial space.

2. Remote velocity is resolved into the body axis to pro-
vide fuselage angle of attack and sideslip information.
Effect of wind on velocity resolution is considered,
as is forward rotor downwash interference on fuselage.

3. Remote velocity is resolved through rotor shaft inci-
dence angle (and is corrected for aircraft pitching
motion) to derive rotor shaft normal plane (S.N.P.)
wind axis velocities and sideslip (g) values.

4. Rotor advance (M) and inflow (A) ratios are computed.

Inflow ratio calculations account for rotor-on-rotor
interference.
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10.

11.

Control axis angle of attack (uca) for each rotor is
calculated. Rotor-rotor interference effects are
included.

Rotor input collective and cyclic controls (8,, Bic,
Alc) are compiled, and both longitudinal and lateral
cyclics are resolved through the rotor sideslip angle
to align controls orthogonal to the local wind. For-
ward rotor cyclic inputs are corrected for delta three
(63) hinging effects.

Coning (ag), longitudinal (aj), and lateral (b;) first-
harmonic flapping coefficients are computed, and first-
order dynamic lags are applied to account for rotor
system flapping response.

Rotor forces and moments are computed using either:

a. The classical equation method, with forces resolved
perpendicular and parallel to the shaft normal
plane and aligned with the S.N.P. wind axis, or

b. The rotor map approach with thrust, power and rotor
propulsive force derived from tabular isolated
rotor or wind tunnel data and expressed in the
rotor wind axis.

Fuselage aerodynamic forces and moments are calculated
from tabular wind tunnel derived data.

Rotor aerodynamic forces and moments are resolved
through rotor sideslip and shaft incidence angles
back into the aircraft body axis. Summation of these
resolved forces and moments with body axis fuselage
forces and moments is performed, and to these values
are added the moments imposed upon the airframe by
individual rotor forces. The force and moment sums
are inserted into the equations of motion to again
compute the airframe acceleration set.

Engine governor response to aerodynamic rotor power
requirements is computed, along with individual rotor
speed degrees of freedom. Rotor shaft windup spring
rates are accounted for in the governor model.

On the left-hand side of Figure 5 are shown the cockpit and
automatic system control inputs. The automatic systems are
not covered in this report in order to keep the rather com-
plicated airframe calculation discussion as simple as possible
for clarity. Reference 5 presents a comprehensive explanation
of all control system functions along with the appropriate
modeling equations..
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TANDEM-ROTOR MECHANICAL CONTROL SYSTEM MODEL

The hybrid mechanization of the mechanical and automatic con-
trol system model is described in this section. It includes
the 347 conventional mechanical control system.

Figure 6 shows a functional block diagram explaining the oper-
ation of a typical tandem-rotor helicopter mechanical control
system, Shown on the left-hand side of the diagram are the
lateral (8g), longitudinal (ég), directional (8Rr), and collec-
tive (8c) cockpit control inputs made by the pilot or gener-
ated analytically.

Before controls are mixed mechanically, the high-authority
differential airspeed hold (DASH) input is summed with the
longitudinal stick, and the lower directional SAS is added to
the pilot pedal input as shown on the chart. Control mixing
then takes place, with collective pitch inputs (resulting from
dp and 8¢ inputs) going to each head, along with lateral
cyclic pitch which is related to §r and 8g inputs. Note that
the collective (8Cp, 6Cr) and differential collective (6B and
OBR) controls are referenced to the full-down collective posi-
tion on each rotor head (6Tp and 6Tg).

After the mechanical control mixing is accomplished, SAS
inputs are summed, and the controls are passed through a
second-order upper boost model. The boost actuators are des-
ignated as being either swiveling or pivoting, depending upon
their primary function on the actual aircraft (note the S or P
subscripts). For both rotors, the boost actuators operate
either together, to produce collective pitch, or differen-
tially, to produce lateral cyclic pitch.

After being processed through the upper boost system, control
inputs are "unmixed", so they can be used in the "classical"”
equations or with the rotor maps. Before the lateral (A)c)
controls are transformed into the S.N.P., wind axis, longitu-
dinal (Bjc) inputs are added. Longitudinal cyclic pitch for
each rotor is put in according to "q" sensed schedules which
vary with calibrated airspeed. Longitudinal cyclic may be put
in by the pilot in conjunction with the AFCS.

Longitudinal cyclic actuator dynamics as shown in Figure 6 are
modeled with a simple first-order lag. Because of the rela-
tively high frequencies involved in the SAS actuators, no
dynarics associated with their operation are included.

All equations describing the conversion of cockpit controls to
the equivalent blade pitch angle, control mixing equations to
accommodate the SAS motion reference, and the final conversion
to the blade pitch angles used for rotor map readings are de-
tailed in Reference 5.
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SMALL-MOTION EXTERNAL LOAD MODEL

The aircraft equations of motion shown schematically in Figure
5 include a simplified external load model based on a two-poir
suspension system. The modified equations are shown in this
section together with load aerodynamic properties.

The simplified external load model is based on three additiona
degrees of freedom which permit longitudinal, lateral and yaw

motions of the load, all measured with respect to the airframe
The three load degrees of freedom are defined by cable angles

(see Figure 7) ugy, Asy and vgr,.

The three additional equations of motion for the sllng load
compute angular acceleration of the cables, i.e., ligr, AsLs
and Vgr,. Along with these changes are terms added into the
orlglnal six airframe equations of motion, reflectln coupling,
which is expressed as a function of USLI USLr SL' ?SLr VSI,»
and vgy,.

The external load equations are based on derivations in Refer-
ence 5. As such, they are the simplest ones and are valid for
relatively small angular motions (15° or less) of the two-poin
parallel cable suspension. A general external load model,
based on total force approach, which includes the tether re-
straints with elastic or inextensible cable, is described in
detail in Appendix I.

FULL-FORCE EXTERNAL LOAD MODEL

While the small-motion external load analytical model describe«
in Reference 5 is adequate for most hover and forward flight
simulation tasks in which cabl~s tensions remain nearly con-
stant, it is difficult to adapt to special transition condi-
tions such as may be encountered during external load lift-off,
from both cable unloaded through partial cable tension, to the
fully airborne state. For this reason, a different set of
equations has been derived to accommodate the simulation of
these special flight conditions. These equations treat the
external load as an independent rigid body, with its own six
degrees of freedom, and specify a set of helicopter and ex-
ternal load forces which couple the two bodies by means of two
arbitrarily located elastic or inextensible cables. The de-
tailed derivation, based on the Lagrangian approach applicable
to the system with constraint equations, is presented in
Appendix I.
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LONGITUDINAL GEOMETRY

LATERAL PENDULUM GEOMETRY
(FRONT VIEW)

LATERAL BIFILAR GEOMETRY ['-‘7/

L
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Figure 7. Simplified External Load
Model Geometry.
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Figure 8 illustrates the model for the combined external load
and helicopter system. The formulation is sufficiently general
to accommodate the following features:

® Arbitrary location of two hooks on the aircraft and
attachment points on the load.

@ Elastic or inextensible cables.
® All inertia properties of the external load.

In the preliminary evaluation of the elastic cables versus the
inextensible cable formulation, it was established that the
simulation of elastic cables will be simpler for two basic
reasons: first, in the case of inextensible cables, the solu-
tion of constraint equations, arising from forcing the cables
to be infinitely stiff in axial direction, will require more
computation to restrain the motion, including the computation
of linear position, velocities, and accelerations along the
direction of cables; second, when the cables become transiently
unstressed (slack), the return to the stressed state with in-
extensible cables will require the computation of impulsive
forces which must be applied to effect a stepwise change in
linear and angular (aircraft and load) velocities resulting
from sudden tautness of the cables. The elastic cable formu-
lation requires only a continuous tracking of cable stretch
magnitudes and rates. The transient cable slacking and stress-
ing will be automatically accommodated by cable elastic forces
alone.
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ANALYTICAL STUDY OF ADVANCED TANDEM-ROTOR
HELICOPTER (ATH) HOVER PERFORMANCE

The procedure that was followed in analyzing comparable pre-
cision hover performance of a hover hold system and a pilot
was:

1. Investigate unaugmented helicopter characteristics.

2. Improve helicopter handling qualities through stability
augmentation loops.

3. Synthesize hover hold system and estimate hover hold
performance in turbulence.

4, With hover hold system off, estimate pilot-in-the-1loop
hover hold performance and pilot workload in turbu-
lence.

UNAUGMENTED AIRCRAFT

To represent the motion of the rigid-body helicopter, a set of
small-perturbation differential equations was used. The equa-
tions, as presented in Figure 9, represent the unaugmented
helicopter, separated into longitudinal-vertical motion and
lateral-directional motion. This separation of axes was main-
tained throughout the analysis. In later sections, these
equations were modified and added to, to include the effects
of gusts, augmentation, and pilot model. The equations are in
first-order form suitable for state matrix evaluations.

Long. tudinal-Vertical Motion

Figure 10 shows the effect that helicopter size has on the
longitudinal-vertical eigenvalues (roots of the characteristic
equation). As shown, the vertical, or plunging, mode (Z,) re-
mains relatively constant with increasing size. The short-
term pitching mode (Mg) also remains relatively constant.
ilovever, the unstable second-order response, which is reflec-
tive of the long-term speed and attitude changes, shows a
slight decrease in instability and a slight reduction in
frequency.

Lateral-Directional Motion

Figure 11 shows the effect that helicopter size has on the
lateral-directional eigenvalues. The stable aperiodic mode
that corresponds to Ny shows little effect in changing size.
The other aperiodic mode is predominantly roll rate damping
(Lp) and shows a slight decrease in time to half amplitude
with increasing size. The eigenvalue at the origin corres-
ponds to the neutral stability associated with heading
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changes. The slightly unstable second-order pair of eigen-
values is reflective of long-term changes in lateral velocity
and bank angle. A slight decrease in frequency is evident
with increasing size.

STABILITY AUGMENTATION

Stability augmentation in the form of feedback loops was added
to the control system to improve helicopter responses. ToO
shorten the time required to synthesize a good system, guide-
lines for choosing shaping and loop gains are taken, for the
most part, from work done on the heavy lift helicopter and the
Model 347.

Loop Closures

To show the effect of these feedback loops, one loop at a time
will be closed with various loop gains. For this purpose only
the 50,000-pound normal-gross-weight configuration will be
analyzed.

Longitudinal-Vertical System

Figure 12 is a block diagram of the feedback loops added to
the longitudinal-vertical system to improve pitch rate damping
and to stabilize the long-term second-order response. An al-
titude rate feedback loop into collective could have been
added at this time to improve vertical damping. However, the
vertical mode is almost completely uncoupled from the longi-
tudinal modes, and thus will be improved when the precision
hover loops are added. Closing the pitch rate feedback loop
first, Figure 13 shows the effect that loop gain has on the
locations of the eigenvalues. Increasing loop gain causes the
eigenvalues corresponding to the pitch rate damping mode and
feedback lag to combine and form a second-order coupled re-
sponse. The eigenvalues representing the vertical damping
mode and feedback washout are only slightly affected. The
long-term unstable pair of eigenvalues moves slightly toward
the imaginary axis, but remains unstable for the range of
gains chosen. The maximum gain shown is the final value
chosen for closure of this loop, and all subsequent loop
closures.

With the rate loop closed, Figure 14 shows the effect of clos-
ing the pitch attitude loop. As loop gain increases, the
higher frequency pitch mode tends to decrease in frequency.
However, the more predominant effect of this loop closure is
to stabilize the long-term response. As loop gain increases,
the unstable pair of eigenvalues crosses the imaginary axis,
approaches the real axis, and splits into two aperiodic modes.
As gain is further increased, one of the aperiodic modes de-
creases in time constant while the other increases. The
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eigenvalue corresponding to the uncoupled washout time con-
stant slightly increases its time constant. Again, as with
the pitch rate feedback loop, pitch attitude feedback into
differential collective has little effect on the vertical
damping mode.

Lateral-Directional System

Figure 15 1s a block diagram showing the selected lateral-
directional stability augmentation loops. Figure 16 shows

the effect of closing the roll rate loop. The effect is
similar to that of the pitch rate loop closure, in that the
roll rate damping (Lp) mode combines with the feedback lag to
form a second-order coupled response. The effect of roll rate
feedback on the directional modes is small. The effect of
this loop on the long-term second-order lateral mode is a
slight improvement in the stability.

Figure 17 is the result of closing the roll attitude loop with
the roll rate loop closed. As the gain increases, the higher
frequency roll rate mode decreases in damping. The long-term
unstable oscillation becomes stable, approaches the real axis,
and splits into two aperiodic modes. As loop gain is further
increased, one eigenvalue becomes more negative, reflecting
the tight bank angle hold, while the other eigenvalue combines
with the washout time constant to form a lightly damped long-
term, low-frequency oscillation. The directional modes are
only slightly affected by this roll attitude loop.

Figure 18 is the result of adding yaw rate feedback to the
previously closed loops. As yaw rate feedback gain increases,
only the mode corresponding to Ny is affected. The time to
half amplitude of this mode decreases by a factor of about
twenty.

Figure 19 shows the effect of now closing the yaw attitude
loop. As can be seen, only the yaw rate mode and the neutral-
ly stable heading mode are affected. As gain increases, these
two modes combine to form a second-order response.

Figure 20 is the result of adding an inertial lateral velocity
feedback loop. The value of this loop can be seen in the im-
proved long-term pair of eigenvalues. As gain increases, this
mode increases in damping ratio until it splits into two ape-
riodic modes.

Effect of Helicopter Size With SAS ON

With all the loops closed as shown in Figures 12 and 15, the
effect of increasing the helicopter size will now be investi-
gated,
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Longitudinal-Vertical Motion

Figure 21 is a plot of the longitudinal-vertical eigenvalues
with SAS ON for four different gross weights. As size in-
creases, it appears that the higher frequency pitch mode ap-
proaches the real axis and splits into two aperiodic modes.

As gross weight continues to increase, one of the aperiodic
eigenvalues becomes more negative while the other moves in the
direction of the origin until it combines with an aperiodic
pitch attitude mode and forms a second-order response at a
lower frequency.

Lateral-Directional Motion

Figure 22 shows the effect of increasing helicopter size on
the lateral-directional eigenvalues. Both of the second-order
responses, lateral and directional, maintain almost constant
damping, but experience a reduction in frequency.

UNPILOTED HOVER HOLD PERFORMANCE

In the previous paragraphs, the helicopter was augmented by
feedback loops to improve its handling qualities. Even though
the helicopter, with these loops closed, is now stable, there
is no guarantee that it will return to its original position
in space when disturbed. To provide position hold, position
errors can be used to feed inputs into the control system.
These inputs can be provided either automatically through
feedback loops or by the pilot through optically sensed errors.
This section deals with the automatic concept.

Loop Closures

Feedback loops were added to the longitudinal=-vertical system
and the lateral-directional system to provide automatic hover
hold capability. As was done before, the effect of closing
these loops one at a time was analyzed using the 50,000-pound
configuration.

Longitudinal-Vertical System

Figure 23 is a block diagram of the selected feedback loops to
provide longitudinal and vertical position hold. Note that
the longitudinal signals are fed back into longitudinal cyclic
and not differential collective, as were pitch rate and pitch
attitude. This is done because longitudinal cyclic is a more
effective longitudinal control, with less pitch coupling. Al-
though the longitudinal and lateral positions were the primary
interest in this report, vertical hold capability was included
for completeness. Since it has been shown that the vertical
motion is almost completely uncoupled from the longitudinal
motion, any improvement in vertical position hold capability
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can be done with a simple one-degree-of-freedom model, inde-
pendent of the results obtained here for the longitudinal and
lateral system.

Closing the inertial longitudinal velocity loop first, Figure
24 shows the result of various feedback gains. As can be
seen, the high-frequency pitch mode is affected by this loop
closure, indicating that this mode is now strongly coupled
with longitudinal velocity. Increasing loop gain tends to
decrease the damping in this mode while increasing the fre-
quency. This loop closure also causes the eigenvalue associ-
ated with velocity damping to increase negatively until it
combines with the pitch attitude mode to form a second-order
response. Further increases in loop gain cause this mode to
increase in frequency at fairly constant damping ratio. This
implies that the rise time will decrease and the settling time
will decrease while the overshoot remains constant. This is
a desirable condition for a tight and rapid control system,
provided the damping level is sufficient to keep overshoot
within tolerances. The eigenvalues that appear at the origin
represent the neutral stability of altitude and longitudinal
position. These loops are yet to be closed.

Now, with the longitudinal velocity loop closed, the longitu-
dinal position loop is closed, Figure 25. Increasing the loop
gain moves the neutrally stable eigenvalue from the origin and
drives it along the negative real axis, thus decreasing its
response time constant. A final time constent of about 1 sec-
ond is reached. One eigenvalue, representing altitude, still
remains at the origin.

Figure 26 shows the effect of closing the altitude rate loop.
The effect of this loop closure with ever-increasing gain is
to drive the vertical damping time constant down, with the
altitude eigenvalue remaining at the origin.

The final longitudinal-vertical system loop closure is the
altitude loop (Figure 27). The effect is to cause the aperi-
odic modes representing vertical velocity and vertical position
to combine into a second-order response. Further increase in
gain causes the coupled response to decrease in damping and
increase in frequency.

Lateral System

Figure 28 is a block diagram of the selected feedback loops to
provide lateral position hold. Figure 29 shows the effect of
adding a lateral velocity feedback through a washout. The
high-frequency roll rate mode increases in damping while
slightly decreasing in damped natural frequency. As gain in-
creases, two lateral aperiodic modes combine to form a second-
order lateral response. Further gain increases cause the
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damping of this mode to decrease. One other lateral aperiodic
mode is driven toward the origin. The second-order directional
mode is unaffected.

Figure 30 is the result of closing the lateral position loop
with all other loops closed. The higher frequency roll mode
is only slightly affected. The lower frequency roll-velocity
mode maintains approximately constant damping while decreasing
in frequency. The neutrally stable eigenvalue at the origin
representing lateral position is pushed out the negative real
axis, consequently quickening its response. The effective
washout time constant is increased, and the eigenvalue is
driven closer toward the origin. The second-order directional
mode is unaffected.

Effect of Helicopter Size With PHS ON

With all the feedback loops representing the stability augmen-
tation and the precision hover systems closed, the effect of
helicopter size was investigated.

Longitudinal-Vertical Motion

Figure 31 shows the effect of increasing helicopter size on
the longitudinal-vertical responses. Increasing size has
almost no effect on the second-order vertical response, due

to the little change in 2Zy. The higher frequency second-order
longitudinal response did not change much either. This points
out the strong dependence of this mode on longitudinal cyclic
control sensitivity, which is relatively invariant with size.
However, the lower frequency second-order longitudinal re-
sponse shows a marked decrease in frequency at almost constant
damping. This effect is due to the dependence of this mode on
DCP ccntrol sensitivity, which decreases with increasing size,
and also to a lesser degree, to a decrease in longitudinal
cyclic pitch control sensitivity.

Lateral-Directional Motion

Figure 32 shows the effect on lateral-directional responses
due to increased helicopter size. The high-frequency roll
mode increases in damping and decreases in frequency. This
effect is probably due to increasing Lp and decreasing Lég
with increasing size. The lower frequency second-order roll-
velocity mode shows only a slight decrease in damping. This
is probably due to the strong dependence of this mode on
lateral control sensitivity (Y68g), which remains relatively
constant. The second-order directional mode shows a slight
decrease in damping and a definite decrease in frequency,
which correspond to the slight decrease in N, and definite
decrease in Ngp with size.
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Low-Speed Gust Model

One way to investigate the hold performance of a helicopter
and control system is to calculate the position root-mean-
square (rms) error of the helicopter subjected to random
velocity disturbances (turbulence). For this purpose, a one-
dimensional gust model was chosen. Random U-gusts were used
to evaluate the longitudinal-vertical motion, while random
V-gusts were used for the lateral-directional motion.

The one-dimensional gust spectrum chosen for this analysis is

2
)= 2wg0g
2 2
w- o+ ow

g

where

=3 Vag
wyg > Tt

The quantity Lt is generally considered to be proportional to
altitude at low altitudes and equal to 1000 feet at altitudes
above 1000 feet. The parameter wg, gust break frequency, is
chosen to be 71/10, agreeing with References 2 and 3. The value
of og is cliosen to be 5 ft/sec for most of the study. However,
since the rms of any response is proportional to Og, the result
for any other value of oy is easily obtained. Figure 33 is a
plot of this gust spectrum and shows a very sharp drop-off
with frequency.

Hover Hold Performance in Turbulence

Using the gust model just described and the fully augmented
helicopter, the performance of the helicopter in turbulence
was investigated.

Longitudinal-Vertical Performance

Figure 34 is the fully augmented (SAS ON and PHS ON) longitu-
dinal-vertical system. Figure 35 shows the modulus squared of
the transfer function, which represents the longitudinal posi-
tion error of the 50,000-pound helicopter to longitudinal gust
as a function of frequency. This plot shows the maximum value
occurring at about 0.1 rad/sec. Figure 36 is the longitudinal
position spectrum, which is obtained by multiplying the modulus
squared of Figure 35 and the gust spectrum of Figure 33. The
predominant effect of the gust spectrum can be seen in the
rapid attenuation with frequency of Figure 36. If the curve
of Figure 36 is calculated for frequencies between minus in-
finity and plus infinity, then integrated between these limits,
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and finally divided by 2w, the result would be the root-mean-
square response of position error due to the gust spectrum,
However, since the position power spectrum is greatly attenu-
ated with frequency, an adequate approximation to the rms can
be obtained by truncating the integration at some cutoff fre-
quency. Figure 37 shows the result of varying cutoff frequency
on rms position error. As can be seen, an asymptotic value is
rapidly approached above 1.0 rad/sec.

A measure of the relative comfort and discomfort of the pilot
is the rms normal acceleration levels. Figure 38 is similar
to Figure 35 except that the transfer function is now vertical
acceleration at pilot station over longitudinal gust. As can
be seen, the maximum value is obtained at a much higher fre-
quency than position error. This is due to the pitch acceler-
ation at the predominant high-frequency pitch mode. But as
shown in Figure 39, the power spectrum of this function due to
the gust spectrum is quite attenuated above 4 rad/sec. Figure
40 shows that the rms pilot acceleration is relatively constant
above a cutoff frequency of 18 rad/sec.

Table X presents the rms values of the longitudinal position
error, vertical position error, pitch attitude error, longitu-
dinal acceleration at c.g., vertical acceleration at c.g., and
vertical acceleration at pilot station as a function of heli-
copter size. The effect of size is minimal on all parameters,
with the greatest effect appearing in pilot station accelera-
tion, which shows a slight increase in size, probably due to
increasing distance between c.g. and pilot station.

Lateral-Directional Performance

Figure 41 is the fully augmented, SAS ON and PHS ON, lateral-
directional system. Figure 42 is the lateral position error
transfer function due to lateral gust for the 50,000-pound
configuration. The peak value for this function occurs at a
slightly higher frequency than did the longitudinal position
error, and does not drop off as rapidly with frequency. Fig-
ure 43 is the corresponding lateral position power spectrum

as a result of the gust spectrum and shows a slightly shallow-
er attenuating slope than did the longitudinal position spec-
trum. As a result of this shallower slope, the rms lateral
position error approaches a higher value than did the longitu-
dinal position rms value, Figure 44.

Figure 45 is the modulus squared of lateral acceleration at
the pilot station. The first peak in this function roughly
occurs at the lower frequency lateral velocity mode, while
the second and smaller peak is influenced by the higher fre-
quency lateral mode. Figure 46 is the result of imposing the
gust spectrum on the acceleration modulus. The gust spectrum
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TABLE X. LONGITUDINAL-VERTICAL MOTION EFFECT OF
GROSS WEIGHT ON RMS RESPONSES TO GUST

SAS ON, PHS ON

Gross Weight
(Lb) 50,000 180,000 120,000 200,000
Xe (Ft) 0.03 0.03 0.03 0.03
Z2e (Ft) 0.05 0.05 0.05 0.05
fe (Deg) 0.13 0.13 0.13 0.14
a
xc.g. 2
(Ft/Sec”) 0.015 0.015 0.014 0.014
a
zc.g. 2
(Ft/Sec”) 0.025 0.025 0.025 0.025
az
P .2
(Ft/Sec”) 0.206 0.207 0.199 0.215
GUST MODEL

One-Dimensional Longitudinal Spectrum
_ 20g oug?
ng T @2 . wgz
oug = 5,0 Ft/Sec

wg = /10 Rad/Sec
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Figure 41. Lateral-Directional System (Complete

Block Diagram).
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'50,000 LB

GR WT =
SAS ON
PHS ON
RMS GUST = 5 FPS
6
v
xlo'2
FT2/RAD/SEC
4
2
0

0 0.5 1.0 1.5 2.0
FREQUENCY - RAD/SEC

Figure 43. Power Spectrum of Lateral Position Error
Due to Lateral Gust.
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almost eliminates the second peak. Finally, the effect of
cutoff frequency is shown in Figure 47.

Table XI presents the rms values for the lateral position
error, bank angle error, heading error, lateral acceleration

at c.g., and lateral acceleration at pilot station as a func-
tion of helicopter size. As evident from the table, helicopter
size has little effect.

PILOTED HOVER HOLD PERFORMANCE

The ability of the pilot to perform the precision hover task
with the automatic hold system off is investigated in this
section. A linear pilot model is for this purpose.

Pilot Model

The pilot transfer function model conventionally employed in
handling quality analyses consists of the general form

Kp (TyS + 1) e '3

p - (TNS + 1) (TIS + 1)

Y

together with adjustment rules for the parameters K,, Tj, and
Ty. The fixed parameters T and Ty represent reaction-time and
neuromuscular lag. General rules for the selection of these
five pilot parameters are presented in Figure 48, which is
reproduced from Reference 4.

From comments made in Reference 5 and preliminary results here,
it was determined that the adjustable pilot lag, Ty, was not
desirable for position loop closures in the crossover fre-
quency range of interest. Figure 49 is representative of the
effect that pilot lag has on closed-loop stability. Thus,

Ty = 0 is used during the analysis.

The actual block diagram of the pilot model used in this study
is shown in Figure 50. The transport lag, e~TS, is represent-
ed by the first-order Pade's approximation. Values for the
fixed parameters Tand Ty are chosen as 0.15 second and 0.10
second, respectively.

Control Options and Pilot-Assist Functions

In evaluating the pilot's ability to perform the precision
hover task, several control options and assist functions will
be considered. Figure 51 is a block diagram showing the con-
trol options and assist functions in the longitudinal axis.
Three longitudinal options will be studied. Referring to
Figure 51,
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TABLE XI.

SAS ON, PHS ON

LATERAL-DIRECTIONAL MOTION EFFECT OF
GROSS WEIGHT ON RMS RESPONSES TO GUST

_

| ——

Gross Weight

(Lb) 50,000 80,000 120,000 200,000
Ye (Ft) 0.097 0.096 0.096 0.095
de (De9) 0.120 0.120 0.120 0.120
Ve (Deg) 0.0115 0.0115 0.0115 0.0172
Y e.6n 5
(Ft/Sec?) 0.054 0.053 0.053 0.052
GYP
(Ft/Sec?) 0.051 0.050 0.050 0.048

GUST MODEL

One~Dimensional Lateral Spectrum

¢

v

9

= 2wgovg2

w2+wg2

6vg = 5.0 Ft/Sec

wg = /10 Rad/Sec
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0-4 T ]
LONGITUDINAL CYCLIC CONTROL
GR WT = 50,000 LB
TL = 2.0
0.3
0.2
0.1
STABLE
o &%
RATIO .
UNSTABLE
-0.1
-0.2 \\
-0.3
0 1 2 3 4 5
PILOT LAG (Ty ) - SEC
Figure 49.

Effect of Adjustable Pilot Lag on Longitudinal
Position Loop Closure Stability.
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_TS
(TL S+l)e

P op (T, S+1)

T
(T, S+1) (-25+1)

T
(TN S+1) (-S-S+l)

2 (1-Ty/Ty)
T/7 5% T

Figure 50. Pilot Model (Block Diagram Used in the Analysis).
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1. Longitudinal Control Type l: 1longitudinal
cyclic control only (K5BIC = 0.1,

2. Longitudinal Control Type 2: differential
pitch control only (KGBIC =0,

Ksg = 1, 155 = 0)

3. Longitudinal Control Type 3: longitudinal
cyclic plus lagged differential
pitch control (K5BIC = 0.1,

Topge = 0-1r Kép = 1, Ty = 2)

Figure 52 shows the control options and assist functions avail-
able in the lateral axis.

1. Lateral Control Type l: lateral cyclic control
with no pickoffs (K LCP = 0)

2. Lateral Control Type 2: lateral cyclic control
with roll quickening through stick
pickoff (X LCP = 1; TL3 = 0.8, TL2 = 3).

In addition to the above lateral options, one further possi-
bility will be investigated in an effort to evaluate the use-
fulness of velocity feedback in aiding the pilot to perform
his task. This option is similar to option 1 except that
there will be no velocity stabilization through the SAS.

3. Lateral Control Type 0: 1lateral cyclic control
with no pickoffs (KLCP = 0) and no velocity

feedback through SAS (GQ = 0)

Pilot Closure of the Position Loop

In this study, it is assumed that the pilot is concerned with
one axis at a time, either longitudinal or lateral. Thus only
single-axis pilot closures will be addressed. According to
Reference 4, the pilot will adjust his transfer function to
perform the task and provide good closed-loop stability. The
question arises as to which takes priority. Reference 3 sug-
gests that the pilot tends to minimize pilot rating as a
weighted function <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>